
ttp/papers/working/squigol.tex

Tom Pressburger

January 18, 1988

Contents

1 Introduction 1

1.1 Related Work : 2

2 Operators and Properties 2

2.1 Notation : 2

2.2 Type Language : 3

2.3 Operators : 3

2.3.1 Reduction : 3

2.4 Properties of the Operators : 4

2.5 Homomorphisms : 5

2.6 Sequence Homomorphisms : 6

2.6.1 Sequence Examples : 6

2.7 Subsequence Operators : 7

2.8 Tupling : 7

3 Equational Derivation of the Maximum Sum Subsegment Problem 8

4 Speci�cation of the Maximum Sum Subrectangle Problem 9

5 Future Work 9

6 Conclusions 10

7 Algebraic Formulation of Some of the Laws 10

1 Introduction

This paper reviews an algebraic language (SQUIGOL), a theory of lists, and an

equational style of reasoning (due to Richard S. Bird [1] and Lambert Meertens [3]),

and then carries out some derivations due to Douglas R. Smith [4]. I �rst introduce

the operators of the algebraic language, along with some of their useful proper-

ties, and present a few results from Bird's Theory of Lists. Then I give (partial)

derivations for divide and conquer algorithms for the maximum sum subsegment and

maximum sum subrectangle problems. The tupling program transformation proves

useful, and is described.

1

1.1 Related Work

Bird gave a derivation of the minimum sum subsegment algorithm in the equational

style, using a singleton-split divide-and-conquer algorithm. Smith gave derivations

of both the maximum sum subsegment and maximum sum subrectangle algorithms

using a middle-split algorithm. Smith and Richard King explored the possibilities

for pipelining in Smith's middle-split algorithm. Edgser W. Dijkstra presented

a derivation of the minimum sum subrectangle problem in his note EWD900a,

December 2, 19841. William McColl (Oxford) noticed that a standard heuristic,

the \sweep-technique", gives a reasonable algorithm for the subrectangle problem,

so perhaps the problem wasn't so hard in the �rst place. [The sweep technique

corresponds to a singleton-split divide-and-conquer algorithm.?]

2 Operators and Properties

2.1 Notation

For integers l and u, the set fl : : ug denotes the set of integers i such that l � i � u.

Sequences will be considered �nite total functions with domain f1 : : ng for some

0 � n. The sequence [l : : u] is [l; l+ 1; . . . ; u� 1; u], if l � u, else [l : : u] = [].

The variables f , g, and h denote unary functions. The variables P , Q will denote

predicates. Pre�x function application is written f x. This is similar to mathemat-

ical notation, e.g. logx, sinx. Parentheses will be added to clarify grouping. All

functions will be unary, though a function may apply to a single tuple of values.

The application of f to a pair hx; yi is written f hx; yi. The symbols � and
 will

denote associative functions that apply to pairs. An application of such a function

could be written � hx; yi, but the in�x function application x�y often looks better.

The same function symbol is often overloaded to express the curried form of the

function. For example, 3+ is the function that adds 3 to its argument. Operators

that combine objects will be overloaded to also combine functions.

(x�) = �y:x� y

(�y) = �x:x � y

P ^Q = �x:(P x) ^ (Q x)

hf; gi = �x:hf x; g xi

[f; g; h] = �x:[f x; g x; h x]

f�g = �hx; yi:hf x; g yi f�g hx; yi= hf x; g yi

Kc = �x:c f �Kc =K(f c)

id = �x:x
e� = �hx; yi:y � x xe�y = y � x

(P �! f ; g) = �x:if P x then f x else g x

Note that if � is associative, commutative, or idempotent, then so is e�.
Recursive functions will be de�ned by giving equations that handle the various

input cases; e.g. for the empty sequence, a singleton sequence, or for a sequence

that is the concatenation of two other non-empty sequences. In the latter case, the

equation will hold for any of the ways of breaking up the sequence into the two

others, though there may be a di�erence in e�ciency. I assume that the sequences

are implemented so that breaking them up into contiguous pieces takes constant

1
In EWD900a, Dijkstra refers to a derivation of minimum sum subsegment in EWD897, but

my copy of EWD897 is about another subject. End of footnote.

2

time. This is true for front-singleton-splits for sequences implemented as lists, and

for any split, if the sequence is implemented in an array.

2.2 Type Language

The following types and type constructors are provided, where � and � stand for

any types:

B ftrue; falseg i.e. booleans

N f0; 1; . . .g i.e. the natural numbers

N+ f1; 2; . . .g i.e. the positive numbers

Z f0; 1;�1; . . .g i.e. the integers

[�] sequences whose elements have type �

f�g sets whose elements have type �

�! � maps from elements of type � to elements of type �:

�� � � ��! Tuples whose �rst element has type �, etc.

Syntactically,� binds more tightly than!, so that ��� ! � parses as (���)! �.

Also, ! associates to the right, so that �! � ! � parses as �! (� ! �).

2.3 Operators

The following describes some of the operators we will be dealing with.

minimum # :Z�Z! B x # y = if x < y then x else y

maximum " :Z�Z! B x " y = if x > y then x else y

compose � : (� ! �)�(�! �)! (�! �) (f � g) x = f (g x)

concatenation ++ : [�]�[�]! [�]

length # : [�]! N

cardinality # : f�g ! N

sequify [] :�! [�] []x = [x]

setify fg :�! f�g fgx = fxg

pair hi :��� ! ��� xhiy = hx; yi

image of f f :�! �) f ? : [�]! [�] f ? [x1; . . . ; xn] = [f x1; . . . ; f xn]

reduce by � �:���! �) �= : [�]! � �=[x1; . . . ; xn] = x1 � � � � � xn
cross by

:���! �) �
 : [�]�[�]! [�]

[x1; . . . ; xn]�
[y1; . . . ; yn] = [x1
 y1; . . . ; x1
 yn; . . . ; xn
 y1; . . . ; xn
 yn]

In many applications, the order of the elements returned by the �� operator

is unimportant, so we can think of it returning a bag of elements. Some of the

properties below are only true when we think of its output is unordered. We can

also think of this operator applying to two bags or two sets, returning bags or sets.

2.3.1 Reduction

The expression �=[] is de�ned to be e�, i.e. the identity element for �. Also

�=[x] = x, for any operator �. The operator � must be associative. If it is also

commutative, then the order of the elements in the sequence does not matter, so for

any permutation s2 of s1, �=s1=�=s2. In this case, we can overload �= so that it

also applies to a bag of values2. If � is also idempotent (i.e. (8x)x� x= x, e.g. [),

then duplicates do not matter, so that if range(s2)= range(s1), then �=s1=�=s2.

In this case, we can overload �= so that it also applies to a set of values.

2
Perhaps we should allow it to apply to a set of values, too.

3

The function += applied to a sequence returns the sum of the elements of the

sequence. A convenient shorthand for this function used extensively below is
P
;

i.e.
P
s=+=s. Similarly,

Q
s= �=s.

One can \implement" the �= operator in several ways. Because � is assumed to

be associative, the grouping is unimportant. Hence, we may evaluate

�=[x1; x2; x3; x4] = x1 � (x2 � (x3 � x4)):

This corresponds to de�ning �= in terms of g as follows:

�=s = g s

g [] = e�
g [x]++s1 = x� g s1

A di�erent grouping is

�=[x1; x2; x3; x4] = ((x1 � x2)� x3)� x4:

This corresponds to computing �= in terms of f with an \accumulating" variable

A as follows:
�=s = f hs; e�i

f h[]; Ai = A

f h[x]++s1; Ai = f hs1; A� xi:

Another possibility is to evaluate �=[x1; x2; x3; x4] = (x1 � x2) � (x3 � x4). The

depth of the expression tree for �=s would be log#s, hence this approach takes

only logarithmic time on a parallel processor.

�=s = b s

b [] = e�
b [x] = x

b s1++s2 = b s1 � b s2 if 1 < #(s1++s2) ^#s1 = b
#(s1++s2)

2
c

2.4 Properties of the Operators

� + # " ++ � �� f? �= #

associative y y y y y y if � is

commutative y y y y n n if � is

idempotent n n y y n n n

identity 1 0 1 �1 [] �x:x [e�] �x:x

�xpoint 0 �1 1 []

distributes over + #," ",# #," ? ++ ++ ++ ++

x � (y # z) = (x � y) # (x � z) if x � 0

(x � y) " (x � z) if x < 0

(f � g) ? x = f ? (g ? x)

s1�
s2 =
 ? (s1�his2)

[x]�
s = (x
) ? s

s�
[x] = (
x) ? s

f ? (s1�
s2) = s1�f�
s2
(g ? s1)�
(g ? s2) = s1�
�g�gs2

�=(s1�
s2) = (�=s1)
 (�=s2) if
 distributes over �, � commutative

4

Some properties may be expressed more neatly in a functional style.

(�=) � [] = id

(f?) � [] = [] � f

(f � g)? = (f?) � (g?)

�
 = (
?) ��hi

(f?) ��
 = �f�

�
 � g?�g? = �
�g�g

(�=) ��
 =
 � �=��= if
 distributes over �

Any associative, commutative, idempotent operator distributes over itself.

Because we will be making heavy use of ++, ", + and
P

in what follows, we reiterate

some of their important properties.
P
(s1++s2) =

P
s1 +

P
s2P

? (s1�++s2) = (
P

? s1)�+(
P

? s2)

x+ (y " z) = (x+ y) " (x+ z)

"=(s1�+s2) = ("=s1) + ("=s2)

Note that the number of additions on the left side of the last equation is (#s1)�(#s2)

but only 1 on the right side.

2.5 Homomorphisms

A function h is a �-homorphism, where � is associative, if there is a function

satisfying

h(x1 � x2) = (h x1)
 (h x2) or, expressed functionally,

h � � =
 � h�h or also

h�=[x1; x2] =
=h ? [x1; x2]

If � is associative, commutative, or idempotent, then so will be
. Also, if e� is

the identity of �, then h� is the identity of
.

The last equation above suggests a generalization that we prove below, namely that

if h (�=s) =
=h ? s for sequences s of length 2, then in fact it holds for sequences

of any length. The cases for sequences of length 0 and 1 hold independently of h.

Assume it holds for sequences of length n� 1, and assume s is length n. Then

h (�=s) = h (�=[x1; . . . ; xn])

= h (x1 ��=[x2; . . . ; xn])

= (h x1)
 h (�=[x2; . . . ; xn]) which is, by induction,

= (h x1)
 ((h x2)
 � � �
 (h xn)) by associativity of

=
=[h x1; . . . ; h xn]

=
=h ? [x1; . . . ; xn]

=
=h ? s

Expressed functionally, this is h � (�=) = (
=) � (h?).

Now we show that h? is a ��-homomorphism:

(h?) ��� =�h�� =�
�h�h =�
 � h?�h?:

For n arguments:

h ?��=s = �
=(h?) ? s or, expressed functionally,

(h?) � (��=) = (�
=) � (h?)?

Every one-to-one function h is a �-homomorphism, with u
v=h((h�1 u)�(h�1 v)).

5

2.6 Sequence Homomorphisms

Every sequence s satis�es s=++=[] ? s. This implies that every ++-homomorphism

h, where h � ++ =
 � h�h may be expressed as (
=) � (f?) where f = h � []. The

following reasoning justi�es this:

h s= h (++=[] ? s) =
=h ? [] ? s=
=(h � []) ? s

Thus, a ++-homomorphism h is completely de�ned by: (1) its action on singletons;

and (2)
.

We also note that the right inverse under � of ++= is []?, because

(++=) � ([]?) = id:

[When we can obtain an inverse f of�=, we learn something about�-homomorphisms,

because then

h= h � �= � f =
= � (h?) � f:

For example, the right-inverse of �= is the function prime-factors; the inverse of

+= is the function �n:[1; . . . ; 1| {z }
n

]. So a �-homomorphism is determined by
 and its

action on primes, and a +-homomorphism is determined by
 and its action on 1.]

2.6.1 Sequence Examples

A familiar homomorphism on sequences is the length function #. Because # �++=+ �#�#

and # � [] =K1, we have # = (+=) � (K1?). Also # � (++=) = (+=) �#?.

For any function f , the function f? is a ++-homomorphism. Also, for any operator

�, �= is a ++-homomorphism.

(f?) � (++=) = (++=) � (f?)?

(�=)++(++=) = (++=) � (�=)?

A familiar injective function is the function rev (reverse of a sequence). Because

rev is one-to-one, it is a ++-homomorphism. Because rev�1 = rev, we have

x
 y = rev((rev x)++(rev y)) = f++
f = rev � [] = []

so therefore rev s = f++=[] ? s. The reader may �nd it interesting to examine the

various ways to evaluate the reduction. The classic paper on fold/unfold transfor-

mations [2] shows how one can transform one form of reverse into the accumulating

reverse. We see that both are implementations of the reduction operator.

The function \group by zeroes" gbz is a homomorphism:

gbz[1; 2; 2; 0; 9; 6; 0; 4; 0; 0; 3]= [[1; 2; 2; 0]; [9; 6; 0]; [4; 0]; [0]; [3]]:

The function sort is a ++-homorphism. It turns out that sort s =merge=[] ? s,

where the function merge merges two sorted sequences to form a sorted sequence.

A binary split implementation of the reduce yields MergeSort, and a singleton-split

implementation (either one) yields InsertionSort.

6

2.7 Subsequence Operators

A subsequence of a sequence s is a not-necessarily contiguous selection of elements

from s. A (sub)segment of s is a contiguous subsequence of s. If s is a sequence,

then the subsegment of s from g to d is s � [g : : d]. In particular, s= s � [1 : :#s].

seqs s = all subsequences of s

inits [x1; . . . ; xn] = [[x1]; [x1; x2]; . . . ; [x1; . . . ; xn]]

tails [x1; . . . ; xn] = [[x1; . . . ; xn]; [x2; . . . ; xn]; . . . ; [xn]]

segs s = all nonempty subsegments of s

seqs s = �++=(�x:[[]; [x]]) ? s or, expressed functionally,

seqs = (�++=) � [K[]; []]?

inits [x] = [[x]]

inits s1++s2 = inits s1++([s1]�++inits s2)

tails [x] = [[x]]

tails s1++s2 = ((tails s1)�++[s2])++tails s2
segs [x] = [[x]]

segs s1++s2 = (segs s1)++(segs s2)

++((tails s1)�++(inits s2))

The order of the results of segs and seqs is usually unimportant. Perhaps they

should return a bag, or set, in which case the ++ above should be the appropriate

operator.

2.8 Tupling

The tupling transformation was identi�ed in [2]. An instance of it's use is given

below.

Suppose f (s++t) = C1 hf s; f t; C2 hg s; h tii for functions g, h, and inexpensive C1

and C2. This is almost an e�cient divide-and-conquer algorithm, except for the C2

term. If g and h are expensive, the recurrence for f may be expensive. However,

an inexpensive computation for f may be achieved if computations for g and h can

be combined with f 's.

A more precise performance analysis proceeds as follows. Let cf n be the cost of

computing f on a sequence of length n; similarly de�ne cg and ch. If the cost of

splitting the input and computing C1 and C2 is constant, say c, then the following

recurrence holds:

cf n= 2 � (cf
n

2
) + (cg

n

2
) + (ch

n

2
) + c:

In particular, if cg and ch are linear, then cf is n logn.

Suppose g (s++t)=Cg hg s; g ti and h (s++t)=Ch hh s; h ti. Then de�neH s= hf s; g s; h si.

If there were an e�cient form for H , then we could compute f by f s= (H s):1. It

turns out that H can be computed by the divide-and-conquer algorithm:

Hs++t =

let hsf ; sg; shi=H s; htf ; tg ; thi=H t

in hC1 hsf ; tf ; C2 hsg ; thii; Cg hsg ; tgi; Ch hsh; thii

For the cost assumptions above, cH , the cost of H , is linear; hence cf is linear.

7

3 Equational Derivation of the Maximum Sum

Subsegment Problem

Given a sequence s of integers �nd the sum of the maximum sum contiguous sub-

sequence, i.e.

MSS s= "=
P

? segs s

We will proceed by equational reasoning on MSS acting on the input s split into

two pieces such that s = s1++s2. If s cannot be split into two pieces, i.e. s = [x],

then

MSS [x] = "=
P

? segs [x] = "=
P

? [[x]] = "=[
P
[x]] = "=[x] = x

This assumes that the empty sequence is not one of the subsegments of s; if segs

is de�ned to include the empty sequence, then if x is negative, the maximum sum

subsegment is [], which has sum 0.

MSS s1++s2 = "=
P

? segs (s1++s2)

= "=
P

? (segs s1 ++ segs s2)++ (tails s1)�++(inits s2))

= "=
P

? segs s1 ++
P

? segs s2 ++
P

? ((tails s1)�++(inits s2))

= "=(
P

? segs s1) " "=(
P

? segs s2) " "=(
P

? ((tails s1)�++(inits s2)))

= MSS s1 "MSS s2 " "=
P

? ((tails s1)�++(inits s2))

= MSS s1 "MSS s2 " "=(
P

? tails s1 �+

P
? inits s2)

= MSS s1 "MSS s2 " ("=
P

? tails s1 + "=
P

? inits s2)

= MSS s1 "MSS s2 " (MST s1 +MSI s2)

We have just introduced two unary functions:

MST x = "=
P

? tails x

MSI x = "=
P

? inits x

We now try to derive the same sort of recurrence for these two functions as for

MSS . If we are successful, we will be able to tuple the functions together to form

an e�cient divide-and-conquer algorithm. We show only the derivation of MST

below; MSI works similarly. The base case MST [x] reduces to x, using reasoning

similar to that for the other base case.

MST s1++s2 = "=
P

? tails (s1++s2)

= "=
P

? ((tails s1)�++[s2] ++ tails s2)

= "=(
P

? ((tails s1)�++[s2]) ++
P

? tails s2)

= "=((
P

? tails s1 �+

P
? [s2])++

P
? tails s2)

8

= ("=
P

? tails s1 + "=
P

? [s2]) " "=
P

? tails s2

= (MST s1) +
P
s2 " MST s2

Of course
P

obeys the same sort of recurrence, namely
P
(s1++s2)=(

P
s1)+(

P
s2).

Hence, the tupling technique can be used to form a divide-and-conquer algorithm

from the recurrences for MST ,
P
, MSI , and MSS .

4 Speci�cation of the Maximum Sum Subrectan-

gle Problem

A generalization extends the segment problem to two dimensions. In this case we

are given a rectangular array of integers, and are asked to �nd the sum of the

maximum sum subrectangle. We model the array as a function A that applies to

coordinate pairs hi; ji, for i 2 xc and j 2 yc, where xc and yc are the indices for

the x-coordinate and y-coordinate, respectively; e.g. xc = [1 : :mx], yc = [1 : :my].

If x and y are subsegments of xc and yc respectively, then x�hiy is the bag of

coordinates describing the subrectangle speci�ed by x and y, and A ? (x�hiy) is

the bag of A's values in that subrectangle. The following de�nition thus speci�es

the maximum sum subrectangle problem:

MSSRA= "=
P

? (A?) ? (�hi) ? ((segs xc)�hi(segs yc))

If we now attempt to split xc into xc1 and xc2 and yc into yc1 and yc2, the dis-

tributive property of segs and�hi will produce the following 16 cross-products:

segs xc1�hisegs yc1 segs xc2�hisegs yc1
segs xc1�hisegs yc2 segs xc2�hisegs yc2
segs xc1�hitails yc1 segs xc2�hitails yc1
segs xc1�hiinits yc2 segs xc2�hiinits yc2

tails xc1�hisegs yc1 inits xc2�hisegs yc1
tails xc1�hisegs yc2 inits xc2�hisegs yc2
tails xc1�hitails yc1 inits xc2�hitails yc1
tails xc1�hiinits yc2 inits xc2�hiinits yc2

At this point, the need for computer assistance in carrying out derivations becomes

apparent.

To be continued.

5 Future Work

1. Study related work in APL, FP, tupling.

2. segs is a homomorphism; what is it's form as �=f?? Is it useful? When is

that normal form of a homomorphism useful?

3. Is there a sense of completeness for an equational axiomatization for this

theory? A directed rewriting system?

4. Carry out the subrectangle derivation. Also for the subsegment case using

indices.

9

5. Compare with notations that use bound variables (e.g. PERFORMO, RE-

FINE). What programs are expressed more easily in REFINE? What would

the derivations look like? Try returning not just the sum, but a subsegment

or rectangle. Does the program get too cluttered?

6. Longest upsequence?

7. Try synthesizing split assuming join, instead of join assuming split, ala Doug.

8. Other derivations: minout, reduction over graphs, the periodic root.

6 Conclusions

The SQUIGOL notation is concise, inspired by algebra, APL and FP, and very

amenable to hand manipulation. A SQUIGOL program can be rather dense, but

spreading it out over more characters would not make it any clearer.

Bird has developed an interesting theory of sequences. Sequences are ubiquitous in

computing, so computer scientists should develop a theory that helps solve problems

that involve sequences, just as mathematicians have developed a theory of numbers

that helps to solve problems that involve numbers.

The derivation shows the power of de�ning appropriate domain-speci�c operators,

such as segs, and studying their properties.

Acknowledgements: I'm very grateful to Richard Bird for advising me during my

brief stay at Oxford, and to Douglas Smith. I have also received interesting com-

ments from Richard J�ullig and Allen Goldberg.

References

[1] Richard S. Bird. Introduction to the Theory of Lists. Technical Report PRG-

56, Oxford University Computing Laboratory, Programming Research Group,

October 1986.

[2] R. M. Burstall and John Darlington. A transformation system for developing

recursive programs. Journal of the ACM, 24(1):44{67, January 1977.

[3] L. G. L. T. Meertens. An Abstracto Reader prepared for IFIP WG 2.1. Technical

Report CWI Note CS-N8702, Centrum voor Wiskunde en Informatica, April

1987.

[4] Douglas R. Smith. Applications of a strategy for designing divide-and-conquer

algorithms. Science of Computer Programming, 8(3):213{229, 1987. Technical

Report KES.U.85.2, Kestrel Institute, Palo Alto, CA, 1985.

7 Algebraic Formulation of Some of the Laws

A semigroup is a pair hS;�i of a carrier set S and an associative operation � over

that set. A monoid is a triple hM;�; e�i, where hM;�i is a semigroup and e�
is a left- and right-identity for �. A commutative monoid is a monoid where the

operation � is commutative. We will use the shorthand M� to refer to the monoid

with carrier set M , where M is one of the types described in Section 2.2, and � is

an associative operation on M . The identity element will be left tacit. Bird gives

10

ways in which the carrier set M and the operation � can be enlarged if an identity

isn't present already.

If M� is a semigroup, monoid, or commutative monoid then so is [M]
��

.

A monoid homomorphism is a function h, where h:M ! N , and where M� and

N
 are monoids, satisfying h � � =
 � h�h. In this case we write h:M� ! N
.

It can be easily shown that h e� must be e
. If h:M� !M�, then h is a monoid

automorphism.

If f :M ! N , then f? : [M]++ ! [N]++.

If M� is a monoid, then �=: [M]++ !M�.

If h:M� ! N
, then h? : [M]
��

! [N]
�

.

A semiring is a quintuple hM;�;
; e�; e
i where hM;�; e�i is a commutative

monoid, hM;
; e
i is a monoid, and
 distributes over �; i.e. for any x, both
x

and x
 areM� automorphisms. The shorthandM�
 will abbreviate that semiring.

If M�
 is a semiring, then �= : [M]
�

!M
.

Sketch of Proof:

Assume true for #s1 < n and prove for #s1 = n as follows.

�=(s1�
s2) = �=(([x]++s01)�
s2)

= �=(([x]�
s2)++(s
0

1�
s2)) distribute left �
, � is commutative

= (�=([x]�
s2))� (�=(s01�
s2)) use induction hypothesis

= ((�=[x])
 (�=s2))� ((�=s01)
 (�=s2)) distribute left

= ((�=[x])� (�=s01))
 (�=s2)

= (�=([x]++s01))
 (�=s2)

= (�=s1)
 (�=s2)

11

